'The math problem has been named the boolean Pythagorean Triples problem and was first proposed back in the 1980's by mathematician Ronald Graham. In looking at the Pythagorean formula: a2 + b2 = c2, he asked, was it possible to label each a non-negative integer, either blue or red, such that no set of integers a, b and c were all the same color. He offered a reward of $100 to anyone who could solve the problem.

'To solve this problem the researchers applied the Cube-and-Conquer paradigm, which is a hybrid of the SAT method for hard problems. It uses both look-ahead techniques and CDCL solvers. They also did some of the math on their own ahead of giving it over to the computer, by using several techniques to pare down the number of choices the supercomputer would have to check, down to just one trillion (from 102,300). Still the 800 processor supercomputer ran for two days to crunch its way through to a solution. After all its work, and spitting out the huge data file, the computer proof showed that yes, it was possible to color the integers in multiple allowable ways—but only up to 7,824—after that point, the answer became no.'

"Solving and Verifying the boolean Pythagorean Triples problem via Cube-and-Conquer" by Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek

**here**

## No comments:

Post a Comment