February 05, 2015

Emilie Savage-Smith

Muslim Heritage Savage-Smith is an internationally acclaimed authority on Islamic science and medicine. Happily, a chance encounter coupled with her forensic eye, set her on course towards a world wide quest which uncovered the unique construction of celestial globes made in parts of the Muslim World and led to a new understanding of the evolution of these instruments. By Najma Kazi

'The celestial globe, known as al-kurah in the Muslim world, though in the 9th and 10th centuries it was also known as al-baydhah (egg-shaped), is the culmination of the earliest attempts to map the sky, by the philosophers and scientists of antiquity and was designed to track the position and movement of constellations and other celestial bodies relative to given terrestrial latitudes. The earth was regarded as the centre of the universe and surrounded by stars and other heavenly bodies. The Chaldeans and ancient Egyptians are thought to be the first to depict the sky and its stars on a sphere and the Greeks the first to construct celestial globes. Greek civilisation was contemporaneous with and overlapped that of the Middle East after Alexander the Great's eastern conquests ensured that the new centre of gravity of the Greek universe was no longer Athens but Alexandria, at the mouth of the Nile in Egypt. The consequent amalgam of Greek, ancient Egyptian and Babylonian gave rise to a flowering of science, in particular the science of astronomy, in the Hellenistic era, and it was this heritage that the Arabs became the new guardians of when they in turn conquered Alexandria in 641. No precision pre-Islamic celestial globes are known to exist but references to them abound in Greek, Roman, Sanskrit and of course Arabic writings on astronomy. Decorative globes were also in demand as were copies of older globes as evidenced by three globes that have survived the Egyptian and Graeco-Roman period. The oldest surviving is the metal Kugel globe, and a copy of an even older globe, clearly not made by a professional instrument maker since he replicated the evidence of repairs on the original, thinking they depicted celestial detail. The Mainz globe, also of metal is Roman/Egyptian and originally part of a sundial. The Farnese globe is a 2nd century CE Roman copy in marble of an older Greek globe.

'Emilie Savage-Smith's ground breaking study began in a somewhat impromptu fashion with a casual encounter: "I was with the Smithsonian in the division of medical sciences. At the time it was the National Museum of History and Technology" she recaps. One day the director of the Institution approached her. The museum had just acquired a celestial globe, inscribed in Arabic. Would she take a look at it and identify where, when and by whom it was made? On examining the globe she found it to be undated and unsigned whereupon the director suggested that she embark on a trawl of the museums of Europe and the Middle East to see if she could find any more. She set off on her expedition with her husband in tow. "You can take the pictures," she told him, mindful of how difficult it is to photograph spheres. Little did she realize that the assignment she had embarked on so casually would morph into a decade long quest, as it dawned on her that these globes were not just beautiful and superlatively crafted examples of metal work but were technical feats in themselves. Every museum had one or two of these globes and "I started to see signatures and dates," she says. Gradually she built up a picture of their construction and history. On her return to Washington, the Conservation and Analytical Laboratory of the Smithsonian Institution agreed to conduct a full range of tests using x-rays and cameras in order to identify the faintest trace of a join anywhere on the inside and the outside surface of the spheres, anything that might give a clue as to how the spheres were cast. By tracking down and studying a large number of the globes she was finally able to put together the pieces of the jig-saw puzzle and identify the maker of the anonymous Smithsonian globe that had set her off on her quest to solve the mystery of why such a fine instrument was left unsigned and undated. More crucially her detective work led her to identify the unique way the globe was constructed - something that had hitherto gone unnoticed.

'Savage-Smith's investigation found that celestial globes from the Muslim world fall into two categories: those made by casting two metal hemispheres and soldering these to produce a seamed globe, on which astronomical data is then inscribed. This was by far the easiest and the most common method of constructing metal globes. Most existing celestial globes are seamed and tend to originate in the Western parts of the Islamic world. The earliest surviving example of a celestial globe is a seamed globe and was made in Muslim Spain in Valencia in 473H/1080 CE by Ibrahim ibn Sa'id al-Sahli al-Wazzan and his son Muhammad. Until Savage-Smith's work it was assumed by historians of science and all metallurgical experts that all surviving metal globes made anywhere in the world are unquestionably seamed.

'The second category is that of seamlessly cast metal globes. In her weighty monograph in which she details the outcome of her decade long quest, Savage-Smith reveals that the process of seamlessly casting hollow metal spheres became well established in North Western India by the end of the 16th century. Though a Lahore workshop was the most prolific, she discovered other workshops were also making precision seamlessly cast globes. One example she found was made in Kashmir by Ali Kashmiri ibn Luqman in 998H/1589-90 CE, in the reign of the Mughal Emperor Akbar. Another was made by Muhammad Salih Tahtawi in 1074H/1663-64 CE and is of interest for being inscribed in both Arabic and Sanskrit. Savage-Smith comments that seamlessly cast globes continued to be made in Lahore up to the mid 19th century. In 1842 Lala Balhumal Lahuri, a Hindu maker of precision instruments made such a globe, inscribed in Arabic and Persian for his Sikh patron. Savage-Smith adds that no workshop today, anywhere in the world, knows how to do this and indeed the casting of seamless metal spheres is regarded as technically impossible.

'Her discovery that the hollow metal globe she was asked to identify was an outstanding technical 'miracle', it being cast seamlessly in one piece and produced by a workshop of precision instrument makers in 16th and 17th century Mughal India, shocked the world's leading metallurgical experts. Prior to her investigation no one imagined that there might be anything extraordinary about the construction of some of these globes with their origins in classical antiquity. The very idea that they could be cast in one piece with no seam was dismissed, as being an impossible feat. As she says "When I first discovered these I was told by the museum as well as historians of metal work that that was physically not possible. You cannot cast a hollow sphere with no seam."

'Savage-Smith discovered that the anonymous Smithsonian instrument belonged to a remarkable family of globes that were seamlessly cast and made by one workshop in the city of Lahore, in present day Pakistan. As she discovered, this family of precision instrument makers, were the most prolific producers of seamlessly cast celestial globes and masters of the technique, establishing this as their particular area of expertise. But why did the maker leave such a fine instrument undated and unsigned? On closer examination Savage-Smith identified a factual error in the surface engraving and surmises that this caused him to cease work on this almost finished globe, leaving the unfinished instrument undated and unsigned.'

No comments: